Minggu, 20 November 2016

KOMPUTASI MODERN DENGAN PARALLEL PROCESSING

KOMPUTASI DENGAN PARALLEL PROCESSING 

Komputasi secara umum Ilmu komputasi adalah bidang ilmu yang mempunyai perhatian pada penyusunan model matematika dan teknik penyelesaian numerik serta penggunaan komputer untuk menganalisis dan memecahkan masalah-masalah ilmu (sains). Dalam penggunaan praktis, biasanya berupa penerapan simulasi komputer atau berbagai bentuk komputasi lainnya untuk menyelesaikan masalah-masalah dalam berbagai bidang keilmuan, tetapi dalam perkembangannya digunakan juga untuk menemukan prinsip-prinsip baru yang mendasar dalam ilmu.

Sedangkan pada komputasi modern bisa diartikan sebagai cara untuk menemukan pemecahan masalah dari data input dengan menggunakan suatu algoritma. Hal ini ialah apa yang disebut dengan teori komputasi, suatu sub-bidang dari ilmu komputer dan matematika. Selama ribuan tahun, perhitungan dan komputasi umumnya dilakukan dengan menggunakan pena dan kertas, atau kapur dan batu tulis, atau dikerjakan secara mental, kadang-kadang dengan bantuan suatu tabel. Namun sekarang, kebanyakan komputasi telah dilakukan dengan menggunakan komputer.


TOKOH YANG MEMBAWA PENGARUH BESAR
DALAM PERKEMBANGAN KOMPUTASI MODERN



John von Neumann

John von Neumann (1903-1957), Beliau adalah ilmuan yang meletakkan dasar-dasar komputer modern. Von Neumann telah menjadi ilmuwan besar abad 21. Von Neumann memberikan berbagai sumbangsih dalam bidang matematika, teori kuantum, game theory, fisika nuklir, dan ilmu komputer yang di salurkan melalui karya-karyanya . Beliau juga merupakan salah satu ilmuwan yang terkait dalam pembuatan bom atom di Los Alamos pada Perang Dunia II lalu.


Paralel Processing adalah kemampuan menjalankan tugas atau aplikasi lebih dari satu aplikasi dan dijalankan secara simultan atau bersamaan pada sebuah komputer. Secara umum, ini adalah sebuah teknik dimana sebuah masalah dibagi dalam beberapa masalah kecil untuk mempercepat proses penyelesaian masalah.
Terdapat dua hukum yang berlaku dalam sebuah parallel processing. yaitu:
  • Hukum Amdahl
  • Amdahl berpendapat, “Peningkatan kecepatan secara paralel akan menjadi linear, melipatgandakan kemampuan proses sebuah komputer dan mengurangi separuh dari waktu proses yang diperlukan untuk menyelesaikan sebuah masalah.”
  • Hukum Gustafson
  • Pendapat yang dikemukakan Gustafson hampir sama dengan Amdahl, tetapi dalam pemikiran Gustafson, sebuah komputasi paralel berjalan dengan menggunakan dua atau lebih mesin untuk mempercepat penyelesaian masalah dengan memperhatikan faktor eksternal, seperti kemampuan mesin dan kecepatan proses tiap-tiap mesin yang digunakan.


























Gambar diatas merupakan contoh dari sebuah komputasi paralel, dimana pada gambar diatas terdapat sebuah masalah, dari masalah tersebut dibagi lagi menjadi beberapa bagian agar sebuah masalah dapat dengan cepat diatasi.
Tujuan Komputasi Paralel
Tujuan dari komputasi paralel adalah meningkatkan kinerja komputer dalam menyelesaikan berbagai masalah. Dengan membagi sebuah masalah besar ke dalam beberapa masalah kecil, membuat kinerja menjadi cepat.


Formula komputasi paralel yang diajukan pada hukum Amdahl

Dimana a adalah banyaknya paralel yang terjadi. Secara teori, artinya proses penyelesaian masalah menjadi lebih cepat dengan menggunakan komputasi paralel.

Salah satu jenis penggunaan komputasi paralel adalah:
PVM(Parallel Virtual Machine) Merupakan sebuah perangkat lunak yang mampu mensimulasikan pemrosesan paralel pada jaringan.
 
Hubungan antara Komputasi Modern dengan parallel processing
Saat ini penggunaan komputer untuk menyelesaikan masalah sudah merasuk ke segala bidang. Hal ini karena komputasi dianggap lebih cepat dibandingkan dengan penyelesaian masalah secara manual. Seiring dengan hal tersebut, semakin dituntut proses komputasi yang semakin cepat. Untuk meningkatkan kecepatan proses komputasi, dapat ditempuh dua cara :
1.  peningkatan kecepatan perangkat keras,
2. peningkatan kecepatan perangkat lunak.

Komponen utama perangkat keras komputer adalah processor. Saat ini, peningkatan kecepatan processor benar-benar luar biasa. Sebenarnya ada banyak cara komputasi yang bisa kita gunakan dalam parallel processing, salah satunya komputasi parallel.

Pemrosesan paralel (parallel processing) adalah penggunakan lebih dari satu CPU untuk menjalankan sebuah program secara simultan. Idealnya, parallel processing membuat program berjalan lebih cepat karena semakin banyak CPU yang digunakan. Tetapi dalam praktek, seringkali sulit membagi program sehingga dapat dieksekusi oleh CPU yang berbea-beda tanpa berkaitan di antaranya.

Komputasi paralel adalah salah satu teknik melakukan komputasi secara bersamaan dengan memanfaatkan beberapa komputer secara bersamaan.

Intinya Adalah :
“Komputasi paralel merupakan salah satu teknik melakukankomputasi secara bersamaan dengan memanfaatkan beberapa komputer independen secara bersamaan. Ini umumnya diperlukan saat kapasitas yang diperlukan sangat besar, baik karena harus mengolah data dalam jumlah besar (di industri keuanganbioinformatika, dll) ataupun karena tuntutan proses komputasi yang banyak. Kasus kedua umum ditemui di kalkulasi numerik untuk menyelesaikan persamaan matematis di bidang fisika (fisika komputasi), kimia (kimia komputasi) dl”

Adapun yang membantu pemrosesan komputasi parallel untuk bekerja lebih cepat adalah sebagai berikut :

Parallel Virtual Machine (PVM)

PVM adalah suatu perangkat lunak yang mampu mensimulasikan pemrosesan paralel pada jaringan komputer. Saat ini ada dua bahasa pemrograman yang didukung oleh PVM, yaitu FORTRAN dan C. Versi PVM yang paling umum digunakan berbasis UNIX, meskipun ada juga PVM berbasis Windows. Cara kerja PVM adalah dengan membuat (spawning) proses-proses anak yang akan dikirim ke processor-processor yang tersebar di jaringan komputer. Dengan PVM bisa ditentukan berapa jumlah processor yang akan dilibatkan dalam proses komputasi.

Network File System (NFS)

Salah satu protocol yang dipergunakan pada komputasi parallel adalah Network File System (NFS). NFS adalah protokol yang dapat membagi sumber daya melalui jaringan. NFS dibuat untuk dapat berdiri sendiri baik dari segi mesin, jenis sistem operasi maupun jenis protokol transport yang digunakan. NFS memperbolehkan user yang telah diijinkan untuk mengakses file-file yang berada di remote host seperti mengakses file yang berada di lokal. Kegunaan dari NFS pada komputasi parallel adalah untuk melakukan sharing data sehingga setiap node slave dapat mengakses program yang sama pada node master

Pemrograman Paralel
Pemrograman paralel adalah teknik pemrograman komputer yang memungkinkan eksekusi perintah/operasi secara bersamaan (komputasi paralel), baik dalam komputer dengan satu (prosesor tunggal) ataupun banyak (prosesor ganda dengan mesin paralelCPU. Bila komputer yang digunakan secara bersamaan tersebut dilakukan oleh computer terpisah yang terhubung dalam suatu jaringan komputer lebih sering istilah yang digunakan adalah sistem terdistribusi (distributed computing).
Tujuan utama dari pemrograman paralel adalah untuk meningkatkan performa komputasi. Semakin banyak hal yang bisa dilakukan secara bersamaan (dalam waktu yang sama), semakin banyak pekerjaan yang bisa diselesaikan. Analogi yang paling gampang adalah, bila anda dapat merebus air sambil memotong-motong bawang saat anda akan memasak, waktu yang anda butuhkan akan lebih sedikit dibandingkan bila anda mengerjakan hal tersebut secara berurutan (serial). Atau waktu yg anda butuhkan memotong bawang akan lebih sedikit jika anda kerjakan berdua.
Performa dalam pemrograman paralel diukur dari berapa banyak peningkatan kecepatan (speed up) yang diperoleh dalam menggunakan tehnik paralel. Secara informal, bila anda memotong bawang sendirian membutuhkan waktu 1 jam dan dengan bantuan teman, berdua anda bisa melakukannya dalam 1/2 jam maka anda memperoleh peningkatan kecepatan sebanyak 2 kali.


Peningkatan Kecepatan
Peningkatan kecepatan dapat diformulasikan dalam persamaan berikut ini 
Dimana  T1 adalah waktu yang dibutuhkan untuk menyelesaikan pekerjaan (program komputer) bila dijalankan dalam satu komputer. Dan Tj adalah waktu yang dibutuhkan jika pekerjaan dikerjakan bersamaan oleh beberapa komputer.
Ada limitasi dalam usaha membuat suatu program komputer berjalan lebih efisien melalui peningkatan kecepatan, hukum yang menetapkan batasan ini dikenal sebagai Hukum Amdahl. Ide dari hukum amdahl ini adalah bahwa anda hanya akan bisa meningkatkan efisiensi program komputer anda, sebatas pada bagian tertentu dari program tersebut yang dapat di parallelkan. Sementara bagian yang memang harus dilaksanakan secara berurutan, akan menjadi penentu performa akhir.
Kembali ke analogi memasak tadi, bila anda harus menggunakan sarung tangan sebelum menyalakan kompor ataupun memotong bawang, maka waktu yang anda butuhkan untuk memakai sarung tangan ini adalah waktu serial, yang tidak dapat dihindari. Sementara waktu untuk memasak dan memotong bawang tadi adalah bagian yang bisa diparalelkan.

Perkembangan di Indonesia
Di Indonesia, usaha untuk membangun infrastruktur mesin paralel sudah dimulai sejak era 90-an, meski belum pada tahap serius dan permanen. Namun untuk pemrograman paralel sudah sejak awal menjadi satu mata-kuliah wajib di banyak perguruan tinggi terkait. Baru pada tahun 2005 dimulai pembuatan infrastruktur mesin paralel permanen, misalnya yang dikembangkan oleh Grup Fisika Teoritik dan Komputasi di P2 Fisika LIPI. Didorong oleh perkembangan pemrograman paralel yang lambat, terutama terkait dengan sumber daya manusia (SDM) yang menguasainya, mesin paralel LIPI ini kemudian dibuka untuk publik secara cuma-cuma dalam bentuk LIPI Public Cluster (LPC). Saat ini LPC telah dikembangkan lebih jauh menjadi gerbang komputasi GRID di Indonesia dengan kerjasama global menjadi IndoGRID.
Pada tahun berikutnya, dengan dukungan dana dari proyek Inherent DiktiFasilkom UI juga membangun mesin paralel. Sementara itu pada tahun 2009, ITB membuat kluster hibrid CPU dan GPU yang pertama di Indonesia dengan kemampuan hingga 60 inti CPU dan 1920 inti GPU.

Hubungan antara komputasi modern dengan paralel processing

Komputasi Paralel merupakan teknik untuk melakukan komputasi secara bersamaan dengan memanfaatkan beberapa komputer yang independen secara bersamaan. Biasanya digunakan untuk kapasitas yang pengolahan data yang sangat besar (lingkungan industri, bioinformatika dll) atau karena tuntutan komputasi yang banyak. Pada kasus yang kedua biasanya ditemukannya kalkulasi numerik untuk menyelesaikan persamaan matematis di bidang fisika (fisika komputasi), kimia (kimai komputasi) dll. Untuk melakukan berbagai jenis komputasi paralel diperlukan infrastruktur mesin paralel yang terdiri dari banyak komputer yang nantinya dihubungkan dengan jaringan dan mampu bekerja secara paralel untuk menyelesaikan suatu masalah. Untuk itu maka digunakannya perangkat lunak pendukung yang biasa disebut middleware yang berperan untuk mengatur distribusi antar titik dalam satu mesin paralel. Selanjutnya pemakai harus membuat pemrograman paralel untuk merealisasikan komputasi. Salah satu middleware yang asli dikembangkan di Indonesia adalah OpenPC yang dipelopori oleh GFTK LIPI dan diimplementasikan di LIPI Public Center.

      Komputasi paralel berbeda dengan multitasking. Multitasking itu sendiri adalah komputer dengan processor tunggal yang dapat mengeksekusi beberapa tugas secara bersamaan. Sedangkan komputasi paralel menggunakan beberapa processor atau komputer. Selain itu komputasi paralel tidak menggunakan arsitektur Von Neumann. Untuk lebih memperjelas lebih dalam mengenai perbedaan komputasi tunggal (menggunakan 1 processor) dengan komputasi paralel (menggunakan beberapa processor), maka kita harus mengetahui 4 model komputasi yang digunakan, yaitu:  
  • SIMD
  • SIMD
  • MISD
  • MIMD

SISD
Merupakan singkatan dari Single Instruction, Single Data yaitu satu-satunya yang menggunakan arsitektur Von Neumann, karena pada model ini hanya menggunakan 1 processor saja. Oleh karena itu model ini dikatakan sebagai model untuk komputasi tunggal. Sedangkan ketiga model lainnya merupakan komputasi paralel yang menggunakan beberapa processor. Beberapa contoh komputer yang menggunakan model SISD adalah UNIVAC1, IBM 360, CDC 7600, Cray 1 dan PDP 1.

SIMD
Merupakan singkatan dari Single Instruction, Multiple Data. Model ini menggunakan banyak processor dengan instruksi yang sama, namun dengan data yang berbeda. Sebagai contoh kita ingin mencari angka 27 pada deretan angka yang terdiri dari 100 angka, dan kita menggunakan 5 processor. Pada setiap processor kita menggunakan algoritma atau perintah yang sama, namun data yang diproses berbeda. Misalnya processor 1 mengolah data dari deretan / urutan pertama hingga urutan ke 20, processor 2 mengolah data dari urutan 21 sampai urutan 40, begitu pun untuk processor-processor yang lain. Beberapa contoh komputer yang menggunakan model SIMD adalah ILLIAC IV, MasPar, Cray X-MP, Cray Y-MP, Thingking Machine CM-2 dan Cell Processor (GPU).

MISD
Merupakan singkatan dari Multiple Instruction, Single Data. MISD menggunakan banyak processor dengan instruksi yang berbeda namun mengolah data yang sama. Hal ini merupakan kebalikan dari model SIMD. Sebagai contoh, dengan menggunakan kasus yang sama pada contoh model SIMD namun cara untuk menyelesaikannya yang berbeda. Pada MISD jika pada komputer pertama, kedua, ketiga, keempat dan kelima sama-sama mengolah data dari urutan 1-100, namun algoritma yang digunakan untuk teknik pencariannya berbeda di setiap processor. Sampai saat ini belum ada komputer yang menggunakan model MISD.

MIMD
Pada Multiple Instruction, Multiple Data biasanya menggunakan banyak processor dengan setiap processor memiliki instruksi yang berbeda dan mengolah data yang berbeda. Namun banyak komputer yang menggunakan model MIMD juga memasukkan komponen untuk model SIMD. Beberapa komputer yang menggunakan model MIMD adalah IBM POWER5, HP/Compaq AlphaServer, Intel IA32, AMD Opteron, Cray XT3 dan IBM BG/L.


Kesimpulan:
Artikel diatas sudah menjelaskan secara singkat tentang pengertian dari parallel processing. Pemrosesan paralel (parallel processing) adalah penggunakan lebih dari satu CPU untuk menjalankan sebuah program secara simultan. Didalam artikel diatas juga diberikan gambaran sedikit tentang perkembangan palalel processing di Indonesia. Tapi dalam artikel diatas, kurang diberitahu kelebihan dan kelemahan dari hubungan antara parallel processing dengan komputasi modern.



#Sumber Referensi
http://masteryuda.blogspot.co.id/2015/06/hubungan-antara-komputasi-modern-dengan.html
http://cluster.teori.fisika.lipi.go.id/utama.cgi?menu=hinfo
http://srifitri07.blogspot.co.id/2014/06/hubungan-komputasi-modern-dengan.html
Nama    : Roland pangihutan

Npm     : 16115250
Kelas    : 2KA30

Tidak ada komentar:

Posting Komentar